人工 血管

1. Swartz DD, Andreadis ST. Animal models for vascular tissueengineering. Curr Opin Biotechnol. 2013;24(5):916–25. doi: 10.1016/j.copbio.2013.05.005.
[Swartz DD, Andreadis ST. Animal models for vascular tissueengineering[J]. Curr Opin Biotechnol, 2013, 24(5): 916-25.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Bolli R, Tang XL, Sanganalmath SK, et al. Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy. Circulation. 2013;128(2):122–31. doi: 10.1161/CIRCULATIONAHA.112.001075.
[Bolli R, Tang XL, Sanganalmath SK, et al. Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy[J]. Circulation, 2013, 128(2): 122-31.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Johnson LL, Tekabe Y, Kollaros M, et al. Imaging RAGE expression in atherosclerotic plaques in hyperlipidemic pigs. EJNMMI Res. 2014;4:26. doi: 10.1186/s13550-014-0026-6.
[Johnson LL, Tekabe Y, Kollaros M, et al. Imaging RAGE expression in atherosclerotic plaques in hyperlipidemic pigs[J]. EJNMMI Res, 2014, 4: 26.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Koobatian MT, Row S, Smith RJ, et al. Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model. Biomaterials. 2016;76:344–58. doi: 10.1016/j.biomaterials.2015.10.020.
[Koobatian MT, Row S, Smith RJ, et al. Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model[J]. Biomaterials, 2016, 76: 344-58.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Ahmed M, Hamilton G, Seifalian AM. The performance of a small-calibre graft for vascular reconstructions in a senescent sheep model. Biomaterials. 2014;35(33):9033–40. doi: 10.1016/j.biomaterials.2014.07.008.
[Ahmed M, Hamilton G, Seifalian AM. The performance of a small-calibre graft for vascular reconstructions in a senescent sheep model[J]. Biomaterials, 2014, 35(33): 9033-40.] [PubMed] [CrossRef] [Google Scholar]

7. Ghosh A, Lu G, Su G, et al. Phosphorylation of AKT and abdominal aortic aneurysm formation. Am J Pathol. 2014;184(1):148–58. doi: 10.1016/j.ajpath.2013.09.016.
[Ghosh A, Lu G, Su G, et al. Phosphorylation of AKT and abdominal aortic aneurysm formation[J]. Am J Pathol, 2014, 184(1): 148-58.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Feng J, Fitz Y, Li Y, et al. Catheterization of the carotid artery and jugular vein to perform hemodynamic measures, infusions and blood sampling in a conscious rat model. J Vis Exp. 2015;95 doi: 10.3791/51881.
[Feng J, Fitz Y, Li Y, et al. Catheterization of the carotid artery and jugular vein to perform hemodynamic measures, infusions and blood sampling in a conscious rat model[J]. J Vis Exp, 2015, 95: doi: 10.3791/51881.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Tara S, Kurobe H, Rocco KA, et al. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly (L-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly (L-lactic acid) graft in a mouse aortic implantation model. Atherosclerosis. 2014;237(2):684–91. doi: 10.1016/j.atherosclerosis.2014.09.030.
[Tara S, Kurobe H, Rocco KA, et al. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly (L-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly (L-lactic acid) graft in a mouse aortic implantation model[J]. Atherosclerosis, 2014, 237(2): 684-91.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Cona MM, Feng Y, Li Y, et al. Comparative study of iodine-123-labeled hypericin and (99m)Tc-labeled hexakis[2-methoxy isobutyl isonitrile] in a rabbit model of myocardial infarction. J Cardiovasc Pharmacol. 2013;62(3):304–11. doi: 10.1097/FJC.0b013e31829b2c6b.
[Cona MM, Feng Y, Li Y, et al. Comparative study of iodine-123-labeled hypericin and (99m)Tc-labeled hexakis[2-methoxy isobutyl isonitrile] in a rabbit model of myocardial infarction[J]. J Cardiovasc Pharmacol, 2013, 62(3): 304-11.] [PubMed] [CrossRef] [Google Scholar]

13. Byrom MJ, Bannon PG, White GH, et al. Animal models for the assessment of novel vascular conduits. J Vasc Surg. 2010;52(1):176–95. doi: 10.1016/j.jvs.2009.10.080.
[Byrom MJ, Bannon PG, White GH, et al. Animal models for the assessment of novel vascular conduits[J]. J Vasc Surg, 2010, 52(1): 176-95.] [PubMed] [CrossRef] [Google Scholar]

14. Manno RA, Grassetti A, Oberto G, et al. The minipig as a new model for the evaluation of doxorubicin-induced chronic toxicity. J Appl Toxicol. 2016;36(8):1060–72. doi: 10.1002/jat.v36.8.
[Manno RA, Grassetti A, Oberto G, et al. The minipig as a new model for the evaluation of doxorubicin-induced chronic toxicity [J]. J Appl Toxicol, 2016, 36(8): 1060-72.] [PubMed] [CrossRef] [Google Scholar]

15. Kang MH, Park HM. Evaluation of autologous blood clot subsegmental pulmonary thromboembolism in minimally invasive experimental canine model. Int J Exp Pathol. 2013;94(5):329–35. doi: 10.1111/iep.2013.94.issue-5.
[Kang MH, Park HM. Evaluation of autologous blood clot subsegmental pulmonary thromboembolism in minimally invasive experimental canine model[J]. Int J Exp Pathol, 2013, 94(5): 329-35.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Cheng J, Koenig SN, Kuivaniemi HS, et al. Pharmacological inhibitor of notch signaling stabilizes the progression of small abdominal aortic aneurysm in a mouse model. J Am Heart Assoc. 2014;3(6):e001064. doi: 10.1161/JAHA.114.001064.
[Cheng J, Koenig SN, Kuivaniemi HS, et al. Pharmacological inhibitor of notch signaling stabilizes the progression of small abdominal aortic aneurysm in a mouse model[J]. J Am Heart Assoc, 2014, 3(6): e001064.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Zhao H, Chen H, Li H, et al. Remodeling of small intramyocardial coronary arteries distal to total occlusions after myocardial infarction in pigs. Coron Artery Dis. 2013;24(6):493–500. doi: 10.1097/MCA.0b013e328363244b.
[Zhao H, Chen H, Li H, et al. Remodeling of small intramyocardial coronary arteries distal to total occlusions after myocardial infarction in pigs[J]. Coron Artery Dis, 2013, 24(6): 493-500.] [PubMed] [CrossRef] [Google Scholar]

18. Meier LA, Syedain ZH, Lahti MT, et al. Blood outgrowth endothelial cells alter remodeling of completely biological engineered grafts implanted into the sheep femoral artery. J Cardiovasc Transl Res. 2014;7(2):242–9. doi: 10.1007/s12265-013-9539-z.
[Meier LA, Syedain ZH, Lahti MT, et al. Blood outgrowth endothelial cells alter remodeling of completely biological engineered grafts implanted into the sheep femoral artery[J]. J Cardiovasc Transl Res, 2014, 7(2): 242-9.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Juntermanns B, Grabellus F, Zhang H, et al. Vascular and nerval damage after intraoperative radiation therapy of the liver hilum in a large animal model. J Invest Surg. 2014;27(3):163–8. doi: 10.3109/08941939.2013.868961.
[Juntermanns B, Grabellus F, Zhang H, et al. Vascular and nerval damage after intraoperative radiation therapy of the liver hilum in a large animal model[J]. J Invest Surg, 2014, 27(3): 163-8.] [PubMed] [CrossRef] [Google Scholar]

21. Maslov MY, Edelman ER, Pezone MJ, et al. Myocardial drug distribution generated from local epicardial application: potential impact of cardiac capillary perfusion in a swine model using epinephrine. J Control Release. 2014;194:257–65. doi: 10.1016/j.jconrel.2014.09.012.
[Maslov MY, Edelman ER, Pezone MJ, et al. Myocardial drug distribution generated from local epicardial application: potential impact of cardiac capillary perfusion in a swine model using epinephrine[J]. J Control Release, 2014, 194: 257-65.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Ashton JR, Befera N, Clark D, et al. Anatomical and functional imaging of myocardial infarction in mice using micro-CT and eXIA 160 contrast agent. Contrast Media Mol Imaging. 2014;9(2):161–8. doi: 10.1002/cmmi.v9.2.
[Ashton JR, Befera N, Clark D, et al. Anatomical and functional imaging of myocardial infarction in mice using micro-CT and eXIA 160 contrast agent[J]. Contrast Media Mol Imaging, 2014, 9(2): 161-8.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Torii S, Nakazawa G, Ijichi T, et al. Comparison of in vivo longitudinal strength and conformability following stent implantation in rabbit iliac artery. http://www.invasivecardiology.com/files/wm%2064-69%20Torii%20JIC%20Feb%202014.pdf. J Invasive Cardiol. 2014;26(2):64–9.
[Torii S, Nakazawa G, Ijichi T, et al. Comparison of in vivo longitudinal strength and conformability following stent implantation in rabbit iliac artery[J]. J Invasive Cardiol, 2014, 26 (2): 64-9.] [PubMed] [Google Scholar]

25. Mrówczyński W, Mugnai D, de Valence S, et al. Porcine carotid artery replacement with biodegradable electrospun poly-ecaprolactone vascular prosthesis. J Vasc Surg. 2014;59(1):210–9. doi: 10.1016/j.jvs.2013.03.004.
[Mrówczyński W, Mugnai D, de Valence S, et al. Porcine carotid artery replacement with biodegradable electrospun poly-ecaprolactone vascular prosthesis[J]. J Vasc Surg, 2014, 59(1): 210-9.] [PubMed] [CrossRef] [Google Scholar]